
USING BITSTREAM SEGMENT GRAPHS FOR COMPLETE
DESCRIPTION OF DATA FORMAT INSTANCES

Michael Hartle, Friedrich-Daniel Möller, Slaven Travar, Benno Kröger, Max Mühlhäuser
Telecooperation, Technische Universität Darmstadt, Hochschulstr. 10, D-64289 Darmstadt, Germany

{mhartle, fmoeller, travar, kroeger}@rbg.informatik.tu-darmstadt.de, max@informatik.tu-darmstadt.de

Keywords: Software engineering, data format, bitstream, complete description

Abstract: Manual development of format-compliant software components is complex, time-consuming and thus error-

prone and expensive, as data formats are defined in semi-formal, textual specifications for human engineers.

Existing approaches on a formal description of data formats remain at high-level descriptions and fail to

describe phenomena such as compression or fragmentation that are especially common in Multimedia file

formats. As a step-stone towards the description of data formats as a whole, this paper presents Bitstream

Segment Graphs as a complete model on data format instances and presents an example PNG where a complete

model on data format instances is required.

1 INTRODUCTION

A data format is an abstract concept for expressing

how some information is laid out in terms of bits and

bytes. Let us assume we want to know the width

of a Portable Network Graphics (PNG) image file.

The PNG file format (Duce, 2003) defines the over-

all structure, assigns the meaning of image width to

some bit range and maps these specific bits to a typed

literal. Using this knowledge, we know how to find

out the width of an image stored in a PNG file and

can write some code similar to Figure 2.

Now, when we implement an algorithm that works

on data following a data format, we translate data

format knowledge into source code. The resulting

source code for format-compliant processing strongly

depends on initial factors such as its purpose and as-

pects of the target environment. Such aspects involve

the underlying hardware, the operating system, the

programming language, the style of programming, the

APIs we intend to use, how we want to keep the in-

formation in memory, whether or not the data format

is octet-aligned and so on. If we change one initial

factor, eg. switch from Java to C++, PHP or VHDL,

the result differs substantially in terms of software de-

sign and implementation. Once designed and imple-

mented, adapting source code to change factors is a

labourous manual task that is often undesirable.

1.1 Problem

In practice, current data formats in domains like Mul-

timedia have reached a tremendous complexity, which

can be demonstrated with an example. For writing

software that is natively capable of setting up a H.323

video conference call to a Microsoft NetMeeting soft-

ware client or a Sony hardware client, we needed

to implement the H.225 and H.245 protocols besides

others. The data format of their protocol messages

is defined using the Abstract Syntax Notation One

(ASN.1) (ITU-T, 1997) and the ASN.1 PER encoding

(ITU-T, 2002) in their respective specifications, all in

all involving several hundreds of pages basically in-

tended for human engineers.

Fortunately, formal ASN.1 specifications of H.225

and H.245 exist that can be translated into source code

using appropriate ASN.1 compilers. For an object-

oriented Java implementation capable of sending and

receiving the respective protocol messages, we did so

using openASN1 (Hoss and Weyland, 2007). The

translation resulted in 321 Java classes with 865kb

of source code for H.225 and in 1.005 Java classes

with 3.87mb of source code for H.245. So without fo-

cusing too much on the numbers, this example makes

obvious that manually translating data format knowl-

edge into source code is all but a trivial task for hu-

man engineers that make mistakes. For data formats

in general, this manual translation process is complex,

time-consuming and thus error-prone and expensive.

Unfortunately, ASN.1 is not generally applicable and

up till now, related work in literature does not deliver

something comparable for data formats in general, as

we will see later in section 2.

Moreover, the initial factors of a translation often

do not remain constant. Data formats are revised, get

extended or have to be adapted to be interoperable

with deviating implementations. Instead of just read-

ing data, we may need to write it as well. We may

have to port parts of it to a J2ME mobile phone, or

an embedded system. We may even need to change

the programming language for better integration with

other components. With every change, we again have

to heavily adapt previous source or even retranslate,

using manual labour.

Automating the translation process of data format

knowledge to source code thus becomes attractive.

For that purpose, we need explicit data format knowl-

edge to be present in a machine-processable sense.

Yet, no suited model on data formats exists in lit-

erature, so for data format knowledge, we are cur-

rently limited human processing of semi-formal, tex-

tual specifications or source code of other implemen-

tations.

1.2 Restating the problem

The intention of a data format is to provide a lossless

transport representation of information for the pur-

pose of storage and transmission for each of its data

format instances. A data format instance is a bijec-

tive mapping between structured, semantic literals as

information and a finite sequence of bits, or bitstream,

as transport representation, with an example shown

in Figure 1. A data format is a finite definition of a

possibly infinite set of data format instances, which is

analogous in definition to that of a formal language

(Mateescu and Salomaa, 1997).

Existing research in literature does not pro-

vide a complete, generally applicable and machine-

processable model for describing arbitrary data for-

mats such as those in practice. Just like a data format

is composed from its instances, we need to be able

to describe these instances before we can describe a

data format as a whole. As such a model on data for-

mat instances is a necessary prerequisite which does

not exist as well, it is the main subject of this paper.

1.3 Implications

Due to the lack of suited models, common engineer-

ing tasks with respect to data formats basically remain

manual processes for human engineers that make mis-

takes, which introduces follow-up problems:

• Defining or reverse-engineering of a data format

has no standard representation suited for auto-

mated documentation and exchange. Ensuring

correctness, completeness, consistency and unam-

biguousness of semi-formal, textual specifications

is entirely in the hand of human judgement and

therefore hard to guarantee.

• Designing and implementing format-compliant

components for typical purposes such as parsing,

in-memory representation and serialization for a

specific environment is a complex task in itself.

Since the complexity of a data format is usu-

ally present in its design and implementation as

well, this manual task becomes even more com-

plex and therefore error-prone. Until discovered

and patched, errors in the implementation can

lead to security issues such as buffer overflows or

break interoperability with other implementations

which is often hard to attribute to. Moreover, the

resulting implementation is bound to its intended

data format, environment and purpose, where any

non-trivial change to any of these requires sub-

stantial adaptation or even redevelopment. It can

be assumed that the arising development cost lim-

its the diversity of existing, reusable implementa-

tions.

• As long as access to and navigation of data in

a specific data format directly depends upon the

existance of suited format-compliant implemen-

tations that have to be developed manually, data

remains tightly coupled with these implementa-

tions. This is a hard problem for Digital Preser-

vation efforts of libraries, as the obsolescence of

applications over time threatens a large body of

digitally born data (Ross and Hedstrom, 2005) on

an individual, corporate and national scale (Wet-

tengel, 1998), much of which comprises our digi-

tal cultural heritage.

1.4 Contribution

In this paper, we present Bitstream Segment Graphs

(BSG) as a complete, generally applicable and

machine-processable model on data format instances,

serving a step-stone towards a later corresponding

model on data formats as a whole.

int width = 32;

int height = 32;

byte bitDepth = 16;

byte colorType = 0;

byte compressionType = 0;

byte filterType = 0;

byte interlaceMethod = 0;

89 50 4e 47 0d 0a 1a 0a

00 00 00 0d 49 48 44 54

00 00 00 20 00 00 00 20

10 00 00 00 00 06 81 F9

6B 00 00 00 04 67 41 4d

41 00 01 86 a0 31 e8 96

5f 00 00 00 40 49 44 41
f−1

f

Figure 1: A data format instance is a bijective mapping between a set of semanic literals (left) and a finite sequence of bits,
depicted as f , where the bit sequence is shown as hexdump (right) with the relevant segment colored in black. The presented
excerpt is the IHDR structure of the PNG image “oi2n0g16.png” (van Schaik, 1998).

// Write image header data

bufferOut.writeLong(width);

bufferOut.writeLong(height);

bufferOut.write(bitDepth);

bufferOut.write(colorType);

bufferOut.write(compressionMethod);

bufferOut.write(filterMethod);

bufferOut.write(interlaceMethod);

buffer = bufferOut.toByteArray();

// Write IHDR chunk

out.writeLong(buffer.length);

out.writeLong(0x49484454);

out.write(buffer);

out.writeLong(calcCRC(buffer));

// Read chunk header

length = in.readLong();

type = in.readLong();

if (type == 0x49484454) {

in.readBuffer(buffer, 0, length);

crc = in.readLong();

if ((length == 13) && (crc == calcCRC(buffer)) {

tempIn = new ByteArrayInputStream(buffer);

bufferIn = new DataInputStream(tempIn);

// Read image header data

width = bufferIn.readLong();

height = bufferIn.readLong();

bitDepth = bufferIn.read();

colorType = bufferIn.read();

compressionType = bufferIn.read();

filterType = bufferIn.read();

interlaceMethod = bufferIn.read();

}

}

Figure 2: Example Java source code extracts for serializing (left) and parsing (right) a PNG IHDR structure which implements
data format knowledge.

We start by taking a look on related work in lit-

erature (Section 2) and develop a more distinct no-

tion of completeness (Section 3). Based on that no-

tion, the formalism of Bitstream Segment Graphs is

defined (Section 4.1) and an algorithm for its compo-

sition is given, together with a visual representation

is given (Sections 4.2 and 4.3). Using our model, we

finally present a practical example (Section 5) that ex-

isting approaches cannot describe completely and fi-

nally end the paper with conclusions (Sections 6) and

acknowledgements.

2 RELATED WORK

The primary source of research on data format de-

scription originates from the field of Multimedia,

where format-unaware, “dumb” delivery of multime-

dia data becomes a problem in the face of widely het-

erogenous environments. Network bandwidth and/or

latency may not allow timely delivery of multime-

dia data to the end-user. Devices may lack compu-

tational power for timely decoding or possess only a

display with limited screen resolution, which cannot

make full use of the encoded video. Research on Uni-

versal Media Access (UMA) addresses this problem

using format-aware on-the-fly content adaptation and

filtering.

UMA thus lead to research on data formats and

their specification, which resulted in MSDL-S (Eleft-

heriadis, 1996) for the documentation of data struc-

tures, its successors Flavor and XFlavor (Elefthe-

riadis and Hong, 2004) for the automated gener-

ation of format-compliant software components or

the Bitstream Syntax Description Language (BSDL)

(Amielh and Devillers, 2001) recombinations and ex-

tensions like gBSDL (Vetro et al., 2006), BFlavor

(De Neve et al., 2006) and gBFlavor (Deursen et al.,

2007) for high-level multimedia content adaptation

and filtering.

Upon closer examination, these approaches fo-

cus on a limited, typically high-level description of

data and do not describe transformations that may be

present in data format instances such as compression

or fragmentation. These approaches therefore do not

provide a model which is sufficient to describe arbi-

trary data formats and their instances to completion.

3 ANALYSIS

For an approach on data format description to be gen-

erally applicable in a real-world scenario, require-

ments need to be fulfilled. First of all, we need to

describe bitstreams of arbitrary partitioning, align-

ment and length in order to cover everything. Fur-

thermore, to describe the bijective mapping between

the bitstream and its contained information, we need

to describe its composition. These requirements can

be understood as varying degrees of completeness re-

garding the description of a data format instance and

can be restated as follows:

• Width-completeness is given if a data description

can cover arbitrary bitstreams. For general appli-

cability, it mandates bit granularity and support

for both arbitrary alignment and length for its de-

scriptive means.

• Depth-completeness is given if a data description

is width-complete and can provide for a bijective

mapping between the bitstream and its contained

information in the form of structured, semantic,

independent literals. It mandates the existence of

suited descriptive means for arbitrary transforma-

tions on bitstreams and the encoding of literals.

The previously identified problem of existing ap-

proaches on the description of data format instances

can now be restated as a lack of depth-completeness,

especially regarding block and concatenating trans-

formations. These are required eg. for handling

zlib-compressed bitstream segments in PNGs or in-

terleaved audio/video bitstream fragments in many

multimedia containers such as MPEG-4 or transport

streams such as MPEG-2 TS.

4 MODEL

We now introduce Bitstream Segment Graphs as a

generally applicable model on data format instances

which is width- and depth-complete.

4.1 Definition

The following definitions include the term bitstream

to make their scope explicit. Whenever no ambiguity

is introduced, it may be omitted otherwise.

DEFINITION 4.1 (BITSTREAM SEGMENT): Given

a bitstream segment v ∈ V, the set of bitstream seg-

ments V , the set of finite consecutive bit sequences

B = {0,1}n,n ∈ N\ {0} and ϕ : V 7→ B, then the bit-

stream segment v represents a finite consecutive bit

sequence ϕ(v) ∈ B.

DEFINITION 4.2 (BITSTREAM SOURCE): A bit-

stream source is a root bitstream segment vRoot ∈ V

with a defined ϕ(vRoot).

A bitstream source represents a digital item which

is composed according to a data format. Files, net-

work packets or file systems on some storage medium

are examples for octet-aligned bitstream sources.

DEFINITION 4.3 (BITSTREAM ENCODING):

Given a bitstream encoding e = (rel,v, l) ∈ RE ,v ∈
V, l ∈ L, where RE is the set of bitstream encodings

and L is the set of literals, then for a given v, e

specifies a mapping relation rel(ϕ(v), l), required to

be bijective. It is abbreviated with φ(v) = l, where

φ : V 7→ L.

A bitstream segment can represent an encoded lit-

eral that is part of the data contained in a bitstream

source. For example, there are two bitstream seg-

ments within a PNG file which contain encoded inte-

gers that represent the width and height of the image.

DEFINITION 4.4 (BITSTREAM TRANSFOR-

MATION): Given a bitstream transformation

t = (rel,Vin,Vout,P) ∈ RT , where Vin,Vout are totally

ordered sets with Vin ⊂ V,Vout ⊂ V,Vin 6= /0,Vout 6=
/0,Vin∩Vout = /0, RT is the set of bitstream transforma-

tions and P is the set of parameters, then t specifies

a mapping relation rel(Vin,Vout ,P), required to be

bijective, between Vin and Vout under application of

P.

In general, a bitstream transformation t bijectively

maps a set of input bitstream segments Vin to a a set of

new bitstream segments Vout as result of the transfor-

mation. Normalized bitstream transformations cate-

gorized by |Vin| : |Vout | cardinality are

• the concatenating transformation of multiple frag-

ment segments into one composite segment (m:1),

• a class of block transformations such as decom-

pression or decryption (1 :1) and

• segmenting transformation of a structured seg-

ment into multiple separate bitstream segments

(1 :n).

Arbitrary transformations of m : n cardinality can be

composed by concatenating two or more normalized

transformations.

DEFINITION 4.5 (BITSTREAM SEGMENT GRAPH):

Given a set of bitstream transformations RT and a set

of bitstream encodings RE , then RT and RE induce a

bitstream segment graph (BSG). It is a weakly con-

nected, directed acyclic rooted graph G = (V,E) with

a set of bitstream segments V as vertices and a set of

directed edges E ⊂V ×V, connecting transformation

input/output pairs of bitstream segments. A BSG de-

scribes the composition of a bitstream source and is

complete iff

∀v ∈V : (∃!t = (relt ,Vin,Vout ,P) ∈ RT ,v ∈Vin) ⊕

(∃!e = (rele,ve, l) ∈ RE ,v = ve)

A BSG is composed from bitstream transforma-

tions and encodings, which are required to have bi-

jective mapping relations. It therefore provides a

bijective mapping between its bitstream source and

its contained literals and thus satisfies the depth-

completeness requirement.

DEFINITION 4.6 (TRANSFORMATION DEPEN-

DENCY): A transformation dependency ex-

ists if for a bitstream segment v there exists a

nonempty set of bitstream segments ϖ(v) ∈ 2V with

t = (rel,Vin,Vout ,P) ∈ RT ,v ∈ Vout that v depends on,

where ϖ : V 7→V n,n ∈ N.

DEFINITION 4.7 (FUNCTIONAL DEPENDENCY):

A functional dependency of a bitstream segment v∈V

on a nonempty set of bitstream segments Vdep ⊂ V

with v 6∈ Vdep exists if the data format defines a func-

tion f and mandates that φ(v) = f (Vdep).

An example of both a transformation dependency

and a functional dependency is a bitstream segment

which encodes the variable length of another bit-

stream segment. For extracting the latter from a seg-

mentation, the value of the former is required as a pa-

rameter to the transformation. Another example of a

functional dependency is a Cyclic Redundancy Code

(CRC) on a set of bitstream segments, stored in an-

other bitstream segment.

Transformation and functional dependencies put

constraints on possible orders of processing for bit-

stream segments and validity that format-compliant

software implementations of parsers, object / stream-

ing models and serializers need to handle in their op-

eration.

4.2 Composition algorithm

Using definitions 4.1 to 4.5, we are able to describe

the bijective mapping between a bitstream source and

its set of contained literals. The following simple al-

gorithm constructs a BSG step-by-step. For a con-

struction at step x, the tuple

(vRoot ,Vx,Vlea fx ,Vliteralx ,RTx ,REx)

describes a designated root bitstream segment vRoot , a

set of bitstream segments Vx, a set of leaf bitstream

segments Vlea fx , a set of literal bitstream segments

Vliteralx , a set of bitstream transformations RTx and a

set of bitstream encodings REx , whereas initial values

are

V0 = {vRoot}

Vlea f0 = {vRoot}

Vliteral0 = /0

RT0
= /0

RE0
= /0

Starting at step x = 1, each step either adds a trans-

formation or an encoding. For a transformation, the

addition of t = (rel,Vin,Vout ,P) /∈ RTx−1
, Vin ⊆Vlea fx−1

results in

Vx = Vx−1 ∪Vout

Vlea fx = Vlea fx−1
∪Vout \Vin

Vliteralx = Vliteralx−1

RTx = RTx−1
∪{t}

REx = REx−1

whereas the addition of an encoding e = (rel,v, l) /∈
REx−1

,v ∈Vlea fx−1
results in

Vx = Vx−1

Vlea fx = Vlea fx−1
\ v

Vliteralx = Vliteralx−1
∪{l}

RTx = RTx−1

REx = REx−1
∪{e}

For step y, the tuple induces a BSG Gy = (Vy,Ey)
where Ey is defined as follows:

∀t = (rel,Vin,Vout ,P) ∈ RTy ,

∀vs ∈Vin,∀vt ∈Vout : e = (vs,vt) ∈ Ey

These steps are repeated until Vlea fz = /0, where the

algorithm terminates as no further addition of either

transformation or encoding to leaf bitstream segments

is possible.

4.3 Visual representation

For the representation of a BSG, bitstream segments

are categorized into types, based on normalized trans-

formations and encodings as shown in Table 1. To

prevent a conflicting type assignment for bitstream

segments that have both the “upward” composite type

and another “downward” type, an identity transfor-

mation is inserted after the composite and the “down-

ward” type is assigned to the newly inserted bitstream

segment.

Depending on their type, segments are depicted as

shown in Figure 3, where start and end denote inclu-

sive start and exclusive end bit positions relative to

the parent bitstream segment(s), type denotes the bit-

stream segment type, parameter denotes a parameter

start end
type

id

start end

role
parameter

id

Figure 3: Visual representations; generic, structure and
composite bitstream segments (left); fragment, primitive
and transcode bitstream segments (right)

for some types and id denotes some plaintext identifi-

cation.

Besides the visual representation, we have defined

an RDF ontology based on bitstream segment types

for storage, processing and interchange of bitstream

segment graphs for arbitrary data, and implemented

a Java-based annotation tool for their construction.

Both the RDF ontology and the annotation tool are

subject of another publication.

5 EXAMPLE

The PNG Test Suite (van Schaik, 1998) includes

the file oi2n0g16.png which contains zlib-compressed

grayscale image data in the form of filtered scanlines,

fragmented in two separate chunks. The file was se-

lected as its composition contains both a block trans-

formation and a concatenation transformation, which

other approaches cannot describe completely due to a

lack of depth-completeness. Figure 4 shows a partial

bitstream segment graph with a depth-complete de-

scription of the contained pixel data including the re-

quired two segmentations, concatenation, decompres-

sion and PNG-specific filtering block transformation.

For the sake of readability, the remaining more sim-

ple structures Signature, IHDR, gAMA and IEND are

shown in a collapsed state only as they just contain

several primitive segments.

File → IDAT #1, IDAT #2

IDAT #n → Len #n,Type #n,Data #n,CRC #n

Data #1,Data #2 → Composite

Compressed → Scanlines

Scanlines → Pixels

An example for both a transformational dependency

and a functional dependency is the segmentation of

IDAT #1 and IDAT #2 as the length of Data #1 and

Data #2 depends on φ(Len #1) and φ(Len #2) re-

spectively. Examples of functional dependencies are

CRC #1 and CRC #2, as φ(CRC #n) depends on

φ(Type #n) and φ(Data #n).

Bitstream segment participates in

Leaf Encoding Transformation Type

yes no no Generic

yes any no Primitive

no no segmentation input Structure

no no transformation input Transcode

no no concatenation input Fragment

no no concatenation output Composite

Table 1: Types of bitstream segments

0 1.432

Structure

File

0 64

Structure
Signature

64 264

Structure

IHDR

264 392

Structure
gAMA

392 1.000

Structure

IDAT #1

1.0001.336

Structure

IDAT #2

1.336 1.432

Structure

IEND

0 32

Primitive

int

Len #1

32 64

Primitive
byte[4]

Type #1

64 576
Fragment

#1

Data #1

576 608

Primitive
byte[4]

CRC #1

0 32

Primitive

int

Len #2

32 64

Primitive
byte[4]

Type #2

64 304
Fragment

#2

Data #2

304 336

Primitive
byte[4]

CRC #2

0 752
Composite

Composite

0 752

Transcode

zlib
Compressed

0 16.640

Transcode

PNG Filter

Scanlines

0 16.384

Primitive

short[32][32]

Pixels

Figure 4: Partial bitstream segment graph for file “oi2n0g16.png”, showing the bijective mapping of two PNG IDAT chunks
to a 16 bit grayscale image with a resolution of 32×32 pixel.

6 CONCLUSIONS

6.1 Summary

This paper has given an in-depth introduction on

needs of research on data format description. It

linked the description of data formats and data for-

mat instances and introduced the terminology of

depth-complete and dependency-complete descrip-

tions. Based on this terminology, the paper con-

tributed the Bitstream Segment Graph as a formalism

for depth-complete data format instance descriptions

and defined a corresponding visual representation.

Using a real-world PNG from a test suite, we have

shown an example that requires depth-completeness

and presented its BSG representation.

Although Bitstream Segment Graphs were devel-

oped for the description of data formats as a whole,

a model on data format instances has merits on its

own. It allows to document the composition of data

and thus serves well during reverse-engineering of in-

stances of unpublished data formats used in protocols

and file formats. A practical example is the reverse-

engineering of exploits in IT Security using BSGs

(Hartle et al., 2008) in order to understand its mecha-

nisms and patch vulnerable implementations.

6.2 Outlook

Further research on data format instance description

such as the application of machine learning are cur-

rently underway and will hopefully result in a model

for describing arbitrary data formats. Once data for-

mats can be described completely in a formal way,

processing and applying data format knowledge in an

automated manner should help simplify the develop-

ment of format-compliant software components and

remove the tight coupling of data and applications.

ACKNOWLEDGEMENTS

The authors would like to thank Tobias Klug, Guido

Rößling and Gina Häuße for providing feedback on

drafts as well as Clayton Hoss and Marc Weyland for

developing openASN1 as their diploma thesis.

REFERENCES

Amielh, M. and Devillers, S. (2001). Multimedia Content
Adaption with XML. In 8th International Conference
on Multimedia Modelling, pages 127–145.

De Neve, W., Van Deursen, D., De Schrijver, D., Ler-
ouge, S., De Wolf, K., and Van de Walle, R. (2006).
BFlavor: A harmonized approach to media resource
adaptation inspired by MPEG-21 BSDL and XFlavor.
EURASIP Signal Processing: Image Communication,
21(10):862 –889.

Deursen, D. V., Neve, W. D., Schrijver, D. D., and de Walle,
R. V. (2007). Automatic generation of generic Bit-
stream Syntax Descriptions applied to H.264/AVC
SVC encoded video streams. iciap, 0:382–387.

Duce, D. (2003). Portable Network Graphics (PNG) Spec-
ification (Second Edition): Information technology –
Computer graphics and image processing – Portable
Network Graphics (PNG): Functional specification.
ISO/IEC 15948:2003 (E).

Eleftheriadis, A. (1996). The Benefits of Using MSDL-
S for Syntax Description. Contribution ISO/IEC
JTC1/SC29/WG11 MPEG96/M1555.

Eleftheriadis, A. and Hong, D. (2004). Flavor: a formal lan-
guage for audio-visual object representation. In MUL-
TIMEDIA ’04: Proceedings of the 12th annual ACM
international conference on Multimedia, pages 816–
819, New York, NY, USA. ACM Press.

Hartle, M., Schumann, D., Botchak, A., Tews, E., and
Mühlhäuser, M. (2008). Describing Data Format Ex-
ploits using Bitstream Segment Graphs. Proceedings
of The Third International Multi-Conference on Com-
puting in the Global Information Technology ICCGI
2008.

Hoss, C. and Weyland, M. (2007). openASN.1: En-
twicklung und Evaluation eines ASN.1-Compilers
und PER-Codecs unter Java. Diploma the-
sis, Reliable Basic Support group, Depart-
ment of Computer Science, TU Darmstadt.
http://www.openasn1.de/media/documents/Diplomarbeit-
openASN.1-0.5.0b.pdf, last accessed 2008-04-02.

ITU-T (1997). Recommendation X.680 (12/97) — Abstract
Syntax Notation One (ASN.1): Specification of Basic
Notation. ITU-T, Geneva.

ITU-T (2002). Recommendation X.691 (07/02) — ASN.1
Encoding Rules: Specification of Packed Encoding
Rules (PER). ITU-T, Geneva.

Mateescu, A. and Salomaa, A. (1997). Formal Languages:
an Introduction and a Synopsis, chapter 1, pages 1–
40. Springer Verlag.

Ross, S. and Hedstrom, M. (2005). Preservation research
and sustainable digital libraries. Int. J. on Digital Li-
braries, 5(4):317–324.

van Schaik, W. (1998). PngSuite - the
official set of PNG test images.
http://www.schaik.com/pngsuite/pngsuite.html,
last accessed 2008-01-02.

Vetro, A., Timmerer, C., and Devillers, S. (2006). The
MPEG-21 Book, chapter Digital Item Adaptation -
Tools for Universal Multimedia Access, pages 243–
281. John Wiley and Sons Ltd.

Wettengel, M. (1998). German Unification and Electronic
Records, chapter 18, pages 265–276. Oxford Univer-
sity Press. ISBN 0198236336.

