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ABSTRACT

Exploits based on data processing bugs are delivered

through crafted data that seems to follow a data format,

yet is altered in some way to trigger a specific bug dur-

ing processing, eg. in order to execute contained malicious

code. Decomposing crafted data according to the purported

data format and the function of its components that are not

format-compliant is a step towards understanding the delivery

mechanism of an exploit and fixing the vulnerable applica-

tion. This paper demonstrates the use of Bitstream Segment

Graphs for describing the structure of exploits on the example

of the TIFF Jailbreak exploit for the Apple iPhone and iPod

Touch with firmware 1.1.1.

Index Terms— Data format, bitstream, description

1. INTRODUCTION

A search in the National Vulnerability Database reveals sev-

eral hundred reports on vulnerabilities that allow the execu-

tion of arbitrary code through crafted files. One of these,

CVE-2006-3459, concerns multiple buffer overflows in the

libtiff library prior to version 3.8.2 which allows the execu-

tion of arbitrary code during the processing of TIFF images.

As this vulnerability also affected the Apple iPhone and iPod

Touch products at least until the release of firmware version

1.1.2, it was used in the Apple TIFF Jailbreak exploit intended

for unlocking these devices to individual developers and users

that seek to extend the functionality of these devices beyond

original boundaries.

A wide range of applications and data formats, be it for

files or network packets, is affected by such vulnerabilities.

They originate in bugs during data processing of applications

that are exploited for the delivery of malicious code through

crafted data. This data is composed from segments that serve

a specific purpose, following a specific data format for a spe-

cific context. Examples are the segment that seems to follow

the data format, but triggers the bug or the segment contain-

ing the malicious code which follows machine instruction set

opcodes for the target device.

So, understanding the complete composition of crafted

data is a step towards understanding the delivery mechanism

employed by the exploit. By describing data, one can help to

understand the exploit, identify the bug and develop a patch.

2. RELATED WORK

Surveying related work on data description, there is a need to

distinguish between describing data and representing data.

Describing data in general needs to cope with arbitrary forms

of data representation, including aspects such as compression,

encryption or multiplexing, whereas representing data has a

normalizing purpose and thus can contend itself with a spe-

cific form of representation. Furthermore, one needs to distin-

guish between describing a data format instance and describ-

ing a data format as a possibly infinite set of data instances.

In the following course of the paper, the terms data and data

format instance are used interchangeably as long as no ambi-

guity is introduced.

Literature on data description is scarce at best and so far

only an indirect subject of active research on data format de-

scriptions, since describing a data format depends on means

for describing its data instances.

2.1. Multimedia

Existing approaches for data format description mainly origi-

nate from the Universal Media Access context of Multimedia

in widely heterogenous environments regarding bandwidth,

computational power or processing capabilities. Known ap-

proaches include Flavor and XFlavor [1] for the automated

generation of format-compliant software components or the

Bitstream Syntax Description Language (BSDL) [2] includ-

ing recombinations and extensions like gBSDL [3] and gBFla-

vor [4] for high-level multimedia content adaptation and fil-

tering.

These approaches, although suited for their specific do-

mains, fail as generic approaches for completely describing

arbitrary data format instances in the face of real-world as-

pects such as zlib-compressed substructures in PNG or de-

pendencies like length determinants in TIFF.
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2.2. Communications

Resulting from the need for interoperability in Communica-

tions, the Abstract Syntax Notation One (ASN.1) [5] allows

the formal specification of a data model. Through the use of

a standard ASN.1 codecs such as the Packed Encoding Rules

(PER) [6] and others, a resulting data format is defined.

ASN.1 is used for specification of network protocols like

H.323 for video conferencing and file formats such as X.509

for public key certificates. Its primary focus is on the spec-

ification of data models, with the corresponding data format

depending on the used ASN.1 codec. For the use of ASN.1 in

conjunction with legacy protocols, the Encoding Control No-

tation (ECN) [7] has been defined, yet its underlying model

on data format instances is only given implicitly in a complex

specification.

3. REQUIREMENTS

For a data description approach to be generally applicable in a

real-world scenario, several requirements need to be fulfilled.

First of all, we need to describe data with arbitrary alignment

and size in order to cover everything. To explore its struc-

ture, we need to describe the composition of data from its

semantically atomic components. For exploring the interplay

between these components, we need to describe their rela-

tions and dependencies. These requirements declare varying

degrees of completeness of a data description and can be re-

stated as follows:

• Width-completeness is given if a data description can

cover the bitstream and nothing but the bitstream. For

general applicability, it mandates bit granularity of its

descriptive means.

• Depth-completeness is given if a data description is

width-complete and can provide for a bijective map-

ping between the bitstream and the set of all structured,

independent literals contained within according to a

data format definition. It mandates the existence of

suited descriptive means for arbitrary bitstream trans-

formations and encodings.

• Dependency-completeness is given if a data description

is depth-complete and can cover all relations between

bitstream segments as defined by a data format defini-

tion. It mandates suited descriptive means for describ-

ing arbitrary relations between properties of bitstream

segments.

The previously identified problem of existing approaches on

data description can be restated as a lack of suited means for

depth-completeness, especially regarding block and concate-

nating transformations, eg. for handling zlib compression or

the concatenation of interleaved audio/video bitstream frag-

ments in multimedia containers for further processing.

4. MODEL

Extending a previous publication [8], we propose the Bit-

stream Segment Graph model for data description in the

context of IT Security. The model is designed to be width-

and depth-complete and thus intends to close the aforemen-

tioned gap regarding data description. It can be extended

for dependency-completeness, which is subject of another

publication.

4.1. Definitions

Without loss of generality, we assume data to be described

in the form of a finite, consecutive sequence of bits, termed a

bitstream. The following definitions include this term to make

their scope explicit. Whenever no ambiguity is introduced, it

may be omitted otherwise.

DEFINITION 4.1 (BITSTREAM SEGMENT): A bitstream

segment v ∈ V represents a finite consecutive bit sequence

ϕ(v) ∈ B, where B = {0, 1}n, n ∈ N \ {0} and V denotes a

set of bitstream segments.

ϕ : V 7→ B

DEFINITION 4.2 (BITSTREAM SOURCE): A bitstream

source is a root bitstream segment vRoot ∈ V with a de-

fined ϕ(vRoot).

A bitstream source represents a digital item which is com-

posed according to a data format. Files, network packets or

file systems on some storage medium are examples for octet-

aligned bitstream sources.

DEFINITION 4.3 (BITSTREAM ENCODING): A bitstream

encoding is a tuple e = (rel, v, l) ∈ RE , v ∈ V, l ∈ L
where RE denotes a set of bitstream encodings and L de-

notes a set of literals. e specifies a bijective mapping relation

rel(ϕ(v), l) for a given v, abbreviated with φ(v) = l.

φ : V 7→ L

DEFINITION 4.4 (BITSTREAM TRANSFORMATION): A

bitstream transformation is a tuple t = (rel, Vin, Vout, P ) ∈
RT where Vin, Vout denote totally ordered sets with Vin ⊂
V, Vout ⊂ V, Vin 6= ∅, Vout 6= ∅, Vin ∩ Vout = ∅, RT de-

notes a set of bitstream transformations and P denotes a

set of parameters. t specifies a bijective mapping relation

rel(Vin, Vout, P ) between Vin and Vout under application of

P .

Normalized bitstream transformations categorized by

|Vin| : |Vout| cardinality are the concatenating transformation

of fragment segments into one composite segment (m : 1),

a class of block transformations such as decompression or

decryption (1 : 1) and the segmenting transformation of a

structure into its separate elements (1 :n). Arbitrary transfor-

mations of m : n cardinality can be composed through these

transformations.
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DEFINITION 4.5 (BITSTREAM SEGMENT GRAPH): A bit-

stream segment graph (BSG) is a weakly connected, directed

acyclic rooted graph G = (V, E) with a set of bitstream seg-

ments V as vertices and a set of directed edges E ⊂ V ×
V connecting transformation input/output pairs of bitstream

segments. It describes the composition of a bitstream source

and is complete iff

∀v ∈ V : (∃!t = (relt, Vin, Vout, P ) ∈ RT , v ∈ Vin) ⊕

(∃!e = (rele, ve, l) ∈ RE , v = ve)

and partial otherwise.

DEFINITION 4.6 (TRANSFORMATION DEPENDENCY): A

transformation dependency exists if for a bitstream segment v
there exists a nonempty set of bitstream segments $(v) ⊂ V
with t = (rel, Vin, Vout, P ) ∈ RT , v ∈ Vout that v depends

on.

$ : V 7→ V n, n ∈ N

DEFINITION 4.7 (FUNCTIONAL DEPENDENCY): A func-

tional dependency of a bitstream segment v ∈ V on a

nonempty set of bitstream segments Vdep ⊂ V with v 6∈ Vdep

exists if the data format defines a function f and mandates

that φ(v) = f(Vdep).

An example of both a transformation dependency and a

functional dependency is a bitstream segment which encodes

the variable length of another bitstream segment. For extract-

ing the latter from a segmentation, the value of the former is

required as a parameter to the transformation. Another exam-

ple of a functional dependency is a Cyclic Redundancy Code

(CRC) on a set of bitstream segments, stored in another bit-

stream segment. Transformation and functional dependencies

put constraints on possible orders of processing for bitstream

segments and validity that format-compliant software compo-

nents need to obey.

4.2. Composition Algorithm

Using definitions 4.1 to 4.5, we can now describe the bijective

mapping between a bitstream source and its set of contained

literals in a width- and depth-complete manner. The follow-

ing simple algorithm constructs a BSG step-by-step. For a

construction at step x, the tuple

(vRoot, Vx, Vleafx
, Vliteralx , RTx

, REx
)

describes a designated root bitstream segment vRoot, a set

of bitstream segments Vx, a set of leaf bitstream segments

Vleafx
, a set of literal bitstream segments Vliteralx , a set of

bitstream transcodings RTx
and a set of bitstream encodings

REx
, whereas initial values are

V0 = {vRoot}

Vleaf0
= {vRoot}

Vliteral0 = ∅

RT0
= ∅

RE0
= ∅

Starting at step x = 1, each step either adds a trans-

formation or an encoding. The addition of a transformation

t = (rel, Vin, Vout, P ) /∈ RTx−1
, Vin ⊆ Vleafx−1

results in

Vx = Vx−1 ∪ Vout

Vleafx
= Vleafx−1

∪ Vout \ Vin

Vliteralx = Vliteralx−1

RTx
= RTx−1

∪ {t}

REx
= REx−1

whereas the addition of an encoding e = (rel, v, l) /∈
REx−1

, v ∈ Vleafx−1
results in

Vx = Vx−1

Vleafx
= Vleafx−1

− n

Vliteralx = Vliteralx−1
∪ {l}

RTx
= RTx−1

REx
= REx−1

∪ {e}

For step y, the tuple induces a BSG Gy = (Vy , Ey) where

Ey is defined as follows:

∀t = (rel, Vin, Vout, P ) ∈ RTy
,

∀vs ∈ Vin, ∀vt ∈ Vout : e = (vs, vt) ∈ Ey

These steps are repeated until Vleafz
= ∅, where the algo-

rithm terminates as no further addition of either transforma-

tion or encoding to leaf bitstream segments is possible. The

resulting tuple induces a complete BSG. The computational

tractability of this algorithm depends on the inherent compu-

tational tractability of the underlying data format.

4.3. Representation

For the representation of a BSG, bitstream segments are cat-

egorized into types, based on normalized transformations and

encodings as shown in Table 1. To prevent a conflicting type

assignment in diagrams for bitstream segments that have both

the “upward” composite type and another “downward” type

such as structure, an identity transformation is inserted after

the composite and the “downward” type is assigned to the

newly inserted bitstream segment.

Depending on their type, segments are depicted as shown

in Figure 1, where start and end denote inclusive start and ex-

clusive end bit positions relative to the preceeding bitstream
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Bitstream segment participates in

Leaf Encoding Transformation Type

yes no no Generic

yes any no Primitive

no no segmentation input Structure

no no transformation input Transcode

no no concatenation input Fragment

no no concatenation output Composite

Table 1. Types of bitstream segments

segment(s), type denotes the bitstream segment type, param-

eter denotes a parameter for some roles and id denotes some

plaintext identification. If all segments in a BSG are octet-

aligned, then more convenient byte positions can be used for

start and end, which is the case in the following BSG on the

Jailbreak TIFF exploit.

start end

type

id

start end

type

parameter

id

Fig. 1. Visual representations; generic, structure and com-

posite bitstream segments (left); fragment, primitive and

transcode bitstream segments (right)

5. EXAMPLE

For building a BSG instance for the Apple TIFF Jailbreak ex-

ploit, we used format-related information from the TIFF file

format [9], the ARM Instruction Set [10], Darwin system calls

[11] and existing ARM-based iPhone shell code in MetaSploit

[12, 13]. Using the BSG model, we present a description of

the exploit with focus on its functional components. Figures

2, 3, 4 and 5 show the relevant parts of the BSG instance.

5.1. TIFF file structure

The Jailbreak TIFF file is composed from the Image File

Header (IFD), a so-called Strip with fake image data, an

Image File Descriptor (IFD#0) and a DotRange structure.

An application starts by processing the IFD structure to

obtain the file byte ordering (0x4949 for little endianess),

to identify the file as TIFF document (0x2a) and to obtain

a pointer to the start byte offset of the first IFD structure

(0x1e/30). It then can access the IFD#0 structure, which

begins with a counter on the number of IFD entries (8), fol-

lowed by the IFD entry stuctures and closes with a pointer

to the start byte offset of the next IFD structure, which is

set to 0 to mark it as the last IFD. The IFD entry structures

are composed from a tag that identify the function of their

payload, a type that describes the data type stored, a count

for the number of data type elements stored and the actual

value, whereas for data longer than 4 bytes, not the actual

data is stored, but rather a byte offset pointer into the file. As

can be seen here nicely, the design choice of using pointers

and length determinants in a data format can increase the

susceptibility of applications for buffer overflow attacks.

According to the contents of the IFD entries #0 to #7,

the TIFF file has a resolution of 8x8 pixels (#0 and #1) with

colour information for each pixel stored in “chunky format”

(#6). The actual compressed image data is located directly

after the IFD structure at byte offset 8 (#4) as a sequence of

21 zero bytes (#5), followed by a zero padding byte to the

word-aligned IFD structure.

Two of the remaining three IFD entries contain invalid

values, as both the identifiers for the codec used for the com-

pression of image data (IFD Entry #2) as well as for its photo-

metric interpretation (IFD Entry #3) have no registered mean-

ing and are thus unknown.

The last IFD entry #7 contains the actual exploit. The

entry refers to a DotRange structure which is intended to de-

scribe the dot coverage for each ink when printing the color-

separated image. Its size is constrained to either 2 or 2 * Sam-

plesPerPixel, whereas the TIFF specification discourages the

latter case of multiple dot ranges. The value of SamplesPer-

Pixel defaults to 1 as it is not explicitly set, making the al-

lowed DotRange size 2 bytes. The actual DotRange structure

has size of 2048 byte values which are located at byte offset

132 in the file.

5.2. Executable payload structure

The malicious code of the exploit is based on the underlying

ARM/BSD environment of the Apple iPhone and iPod Touch

devices. The “DotRange” segment shown in Figure 5 is com-

posed from three segments with only the first two having a

significant function. The “Overflow” segment overwrites the

stack pointer (SP) and program counter (PC) with suited val-

ues, whereas the second “Payload” segment contains a NOP

sled as a landing zone and the “Loader” segment which con-

tains a network code loader. The loader allocates executable

memory via a call to mmap(). It then creates a socket, opens

a TCP/IP connection to 91.121.18.102:80 and sends a HTTP

GET request for a file with further executable code. It skips

over the HTTP GET response headers, transfers the returned

executable code into the allocated memory and finally exe-

cutes it.

6. SUMMARY AND OUTLOOK

We presented the data description of the Apple TIFF Jailbreak

using the Bitstream Segment Graph model and showed its ap-

plicability for documenting exploits with mingled, separate

formats such as the TIFF file format and the ARM machine

code.
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Fig. 2. Partial bitstream segment graph for the Apple TIFF Jailbreak exploit, with the DotRange structure shown in Figure 5
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Fig. 5. Partial bitstream segment graph for the DotRange structure containing the actual exploit code
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Fig. 3. Bitstream segment graph for the IFD Entries#0, #1,

#2, #3 and #6, where Value represents information on Im-

ageWidth, ImageLength, Compression, PhotometricInterpre-

tation and PlanarConfiguration, respectively.
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Fig. 4. Bitstream segment graph for the IFD Entry #4, #5

and #7, where Value represents information on StripOffsets,

StripByteCounts and DotRange, respectively.

The BSG model provides a necessary conceptual base-

line for the complete description of arbitrary data format in-

stances. In order to extend the description to data formats as a

whole, we intend it to serve as a basis for a logic-based theory

on data formats, which also has applications in other domains,

eg. enabling authentic long-term access to information in ob-

solete data formats for Digital Preservation [14].

Additional work is underway on publications for an RDF

representation of BSG instances for storage and exchange

and a Java-based annotation tool currently under develop-

ment, with the goal of enabling use of BSGs in practice.
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